2 research outputs found

    RNA Interference (RNAi) for plants

    Get PDF
    As we are facing global population development, strategies are required to improve agricultural production in the battle against hunger and poverty. Agricultural biotechnology provides a powerful method in combination of conventional breeding, new innovations and enhanced management of resources which improves the productivity of livestock, aquaculture, and crops. After the finding of RNA interference (RNAi), researchers have made considerable growth in improving this remarkable crop especially in defence technology. RNA interference is a vital plant growth, development and reaction regulator to various types of stresses. This technology leads to higher efficiency and potency of gene silencing, thus becoming the highly promising technology for crop improvements at a rapid rate with some advantages. Nowadays, RNAi has been widely used for the improvement in agricultural biotechnology and seems to be applicable and commercialized in other fields too

    A Green Approach for the Synthesis of Silver Nanoparticles Using Ultrasonic Radiation’s Times in Sodium Alginate Media: Characterization and Antibacterial Evaluation

    Get PDF
    The synthesis of silver nanoparticles (Ag-NPs) was achieved by a simple green chemistry procedure using sodium alginate (Na-Alg) under ultrasonic radiation as a stabilizer and physical reducing agent. The effect of radiation time on the synthesis of Ag-NPs was carried out at room temperature until 720 min. The successful formation of Ag-NPs has been confirmed by UV-Vis, XRD, TEM, FESEM-EDX, zeta potential, and FT-IR analyses. The surface plasmon resonance band appeared at the range of 452–465 nm that is an evidence of formation of Ag-NPs. The XRD study showed that the particles are crystalline structure in nature, with a face-centered cubic (fcc) structure. The TEM study showed the Ag-NPs have average diameters of around 20.16–22.38 nm with spherical shape. The FESEM-EDX analysis confirmed the spherical shape of Ag-NPs on the surface of Alg and the element of Ag with the high purity. The zeta potential showed high stability of Alg/Ag-NPs especially after 720 min irradiation with value of −67.56 mV. The FT-IR spectrum confirmed that the Ag-NPs have been capped by the Alg with van der Waals interaction. The Alg/Ag-NPs showed the antibacterial activity against Gram-positive and Gram-negative bacteria. These suggest that Ag-NPs can be employed as an effective bacteria inhibitor and can be applied in medical field
    corecore